Electrical Discharge and Plasma

- a. Course Code:EPE-818
- b. Title: Electrical Discharge and Plasma
- c. Credit Hours: For each course=03
- d. Objectives (Repetition: Same as educational objectives)The objectives of "Electrical Discharge and Plasma" course are:
- To gain knowledge of basic processes in low-temperature weakly ionized discharge plasma
- To understand the fundamental properties of DC, RF, corona, and spark type of electric discharges in gases.
- To learn different simulation techniques for discharge plasma simulations
- To learn the use of "Multi-physics Software" for plasma discharge simulations
- To learn and analyze plasma discharge generation techniques for conducting research and development in electrical and other industries.
- e. Outcomes

By the end of this course students will be able for following.

- Understand the core concepts of weakly ionized low-temperature plasma discharges
- Understand the series of different physical processes behind complete breakdown of different high voltage gaseous insulation
- Develop and design simulation models for plasma discharges through different numerical simulation techniques and Multiphysics software
- f. Contents with suggested contact hours

The details of the content and contact hours

Sr. No.	Topics	Book	Contact Hours
	Introduction		
	Subject of electrical discharge		3
	History of electrical discharge research		
1	Classification of electrical discharges	Y.P.R	
	Subject of low temperature plasma		
	Interconnection of electrical discharge		
	and plasma		
	Elementary processes Electrical		
	Discharge		9
	Charged particles in plasma and	MA	
	electrical discharge		
2	Motion of charged particles in electric		
	and magnetic field		
	Collision interaction of charged		
	particles		
	Ionization and deionization processes		
	High Voltage Discharge Plasma		
	DC discharges		6
3	Pulsed DC discharges	DX	
	Dielectric barrier discharge		
	High pressure discharges		
	Spark and corona discharges		
	General concepts	VDD	9
	Electron avalanches		
4	Streamer discharge		
4	Streamer initiation and propagation		
	Streamer in electronegative gases		
	Spark channel		
	Corona discharges		

	Leader discharges		
	Capacitively coupled Radio-Frequency		
	Discharges		6
5	RF and microwave discharges	VDD	
	Capacitively coupled discharges	1.6.18	
	Inductively coupled discharges		
	Microwave discharges		
	Plasma Discharge Modelling and		
	Numerical Simulation		
	Theoretical foundation of plasma		6
	modelling		
6	Fluid simulation Technique	DX	
	Particle simulation technique		
	Hybrid simulation technique		
	Limitation in plasma modelling and		
	numerical simulation		
	Gas discharge plasma and their		
	applications		
	Electrical power industry (SF ₆		
7	alternatives, CO ₂ decomposition etc.)	МА	6
	Non-electrical industry (material,		U U
	processing, medical treatment, water		
	treatment, pollution treatment, waste		
	management)		
Total			45

g. Details of lab work, and workshop practice (if applicable). N/A

h. Recommended Reading (including Textbooks and Reference books with dates).

S.	Title	Author(s)	Year	Codes	Remarks
----	-------	-----------	------	-------	---------

No.			Published		
1	Plasma Physics and Engineering	A. Fridman and L. Kennedy	2011	A.F	Textbook
2	Gas Discharge and Gas Insulation	D. Xiao	2015	DX	Reference book
3	Gas Discharge Physics	Yu. P. Raizer	1997	Y.P	Text book
4	Fundamentals of Plasma Discharges and Materials Processing	M.A. Lieberman and A. Lichtenberg	2005	MA	Reference book

i. Assessments

Mid-term, Final Exam and quizzes, assignment etc.